Sample record for Diiodomethane supplied to the DataPhysics test liquid data base.
This record is also available as Adobe Acrobat PDF-File: Diiodomethane.PDF
Further records can be achieved by registration via email to:
info@surface-tension.de
Property Data Sheet - Liquid Data Base
Rev. 1.0b Date: 03.09.2000
Name:
Methylene Iodide
IUPAC-Name: Diiodomethane
Sum formula: CH2I2
Beilstein-Ref.: E IV 1, p. 96
CAS-Ref.-No.: 75-11-6
Merck-Index: 11,5985; 12,6143
Structure formula:
Smiles Notation: C(I)I
Synonyms: Methylene diiodide; Dijodmethan; Methylenjodid; Mi-gee; Methyl diiodide
Property
Coeffic./Unit Value
Notes/References
Molecular Weight
g/mol 267.836
based on IUPAC 1995 Atomic Weights:
T.B. Coplen, J. Phys. Chem. Ref.
Data 26 (1997), p. 1239
Critical Temperature
K
747.87 estim.
rev. Lydersen method
740.92 estim.
Joback method
Critical Pressure
bar
47.32
estim. rev. Lydersen method
54.23
estim. Joback method
Critical Volume
cm³/mol 252.3
estim. rev. Lydersen method
267.5
estim. Joback method
Melting Point
K
279.25 CRC
Hdb 97/98 #7506 [1]
°C
6.1
CRC Hdb 97/98 #7506 [1]
Normal Boiling Point
K
455.2
CRC Hdb 97/98 #7506 [1]
°C
182
CRC Hdb 97/98 #7506 [1]
Density
g/cm³
3.3254 @ 293
K, D'Ans-Lax, 1998, p. 1017
3.3212 @ 20
°C, CRC Hdb 97/98 #7506 [1]
3.3079 @ 25
°C, Riddick et al. 1986 [5]
Density Function
d = A + BT + BT², T = temperature (°C)
d = Density (g/cm³)
A, g/cm³ 3.3707 ±
0.0019 eval. regression with meas. data from
Tmin (12 °C)
A.I. Vogel et. al., J. Chem. Soc. 1948,
Tmax (120 °C)
B, g/cm³/K -2.4958E-3
p. 1850, V. Griffing et al., J. Phys.
C, g/cm³/K² -8.6689E-8
Chem. 58 (1954) p. 1054,
Beilstein E III 1, p. 100
Molar Volume
cm³/mol 80.64
@ 20 °C, eval. from Density,
CRC Hdb 97/98 #7506
Color/Odor
-
-
Light-yellow, clear liquid with a
chloroform like odor,
light-sensitive
Flash Point
°C
>112
Catalog Acros Organics
104
Riddick et al. 1986 [5]
Vapor Pressure @ 20 °C
mm Hg 0.85
from Vapor Pressure Equation
Parameters
Vapor Pressure Equation Parameters
log10(P) = A + BT + C log10(T) + DT²,
T = temp. (K)
P = Vapor pressure (bar) A
39.5746 eval. Daubert
et al., 1989 [6]
Tmin (279.25 K)
B, 1/K -4052.75
eval. Daubert et al., 1989 [6]
Tmax (747.00 K)
C
-11.711 eval. Daubert
et al., 1989 [6]
D 1/K² 2.2058E-6
eval. Daubert et al., 1989 [6]
Acentric Factor
1
0.1468 eval.
Lee-Kessler Equation Parameters
0.1405 eval.
Daubert et al., 1989 [6], Tc = 747.00 K
IG Enthalphy of Formation kJ/mol
118.0 ± 4.2 meas. Kudchadker and Kudchadker,
1976 [8]
90.0
estim. MOPAC 6.0, MNDO method (21.50 kcal/mol)
90.0
estim. MOPAC 6.0, AM1 method (21.50 kcal/mol)
89.8
estim. Joback method (21.44 kcal/mol)
Liq Enthalphy of Formation kJ/mol
68.5 ± 0.8 meas. Carson, Laye,
et al., 1993 [10]
Enthalphy of Fusion
kJ/mol 12.05
@ 279.25 K, Daubert et al., 1989 [6]
Enthalphy of Vaporization kJ/mol
45.6
@ 298.15 K, meas. Carson, Laye, et al., 1994 [13]
43.09
@ 298.15 K, estim. Watson method
44.20
@ 298.15 K, estim. Pitzer method
49.36
@ 298.15 K, eval. Daubert et al., 1989 [6]
Index of Refraction n[D,20] -
1.7425 @ 20
°C, CRC Hdb 97/98 #7506 [1]
1.74108 @ 20 °C,
A.I. Vogel et. al., J. Chem. Soc. 1948, p. 1850
Molar Refraction R[D,20] cm³
32.57
@ 20 °C, eval. from n[D,20], CRC Hdb 97/98 #7506 [1]
Polarizability
ų
12.90
CRC Hdb 97/98, p. 10-206
13.00
estim. MOPAC 6.0, MNDO method
12.42
estim. Group contributions method
Ionization Energy
eV
9.46 ± 0.02 meas. Tsai, Baer, et al.,
1975 [14]
10.87
estim. Hyperchem 5.02, MNDO method
10.56
estim. Hyperchem 5.02, AM1 method
Constant Pressure Heat
J/(mol K) 133.81
@ 298.15 K, meas. Carson, Laye, et al., 1993 [10]
apacity of liquid
112.8
@ 298.15 K, meas. Shehatta, 1993 [11]
133.9
@ 298 K, meas. Kurbatov, 1948 [12]
Thermal Conductivity
W/(m K) 0.1015
@ 279.25 K, eval. Daubert et al., 1989 [6]
Viscosity
mPas
2.76 ± 0.05 @ 20 °C, eval. from
regression, Yaws, 1995 [7]
Viscosity Function
log10(h) = A + B/T + CT + DT², T = temperature (K)
h = Dynamic Viscosity (mPas) A, 1
-1.461 Yaws,
1995 [7]
Tmin (279 K)
B, K
507.43
Tmax (747 K)
C, 1/K 0.0011256
D, 1/K² -1.847E-6
Dielectric Constant
1
5.32
@ 298.2 K, CRC Hdb 97/98, p. 6-141
(Permittivity)
5.316
@ 25 °C, Riddick et al. 1986 [5]
Relative Permittivity Function
e = A + BT + CT² + DT³, T = temperature (°C)
e = Permittivity (1)
A, 1
-
Tmin ( °C)
B, 1/K -
Tmax ( °C)
C, 1/K² -
D, 1/K³ -
Dipole Momentum:
D
1.08
@ 10..70 °C, meas. in Benzene, D'Ans-Lax [4], p. 3-303
1.14
meas. in Hexane, Beilstein E III 1, p. 100
1.10
meas. in Benzene, Beilstein E III 1, p. 100
1.16
estim. Hyperchem 5.02, MNDO method
1.13
estim. Hyperchem 5.02, AM1 method
Surface Tension
mN/m 50.88
@ 20 °C, G. Körösi et al., J. Chem. Eng. Data 26 (1981)
p. 323
50.0
H.J. Busscher et al., Coll. Surf. 9 (1984), p. 319-331
50.8
F.M. Fowkes, Ind. Eng. Chem. 56 (1964) p. 48
50.8
D.K.Owens et al., J. Appl. Polym. Sci. 13 (1969), p.1741
50.8
G. Ström et al., J. Colloid Interf. Sci. 119 (1987), p. 352
Property Coeffic./Unit Value Notes/References
Surface Tension Function
SFT = A + BT + CT², T = temperature (°C)
SFT = Surface Tension (mN/m) A, mN/m
53.48 ± 0.07 from regression, LB IV/16,
1961-98 [3], p. 144
Tmin (0 °C)
B, mN/m/K -0.14154
Tmax (100 °C)
C, mN/m/K² 4.9567E-5
Dispersion Force Contrib. mN/m
47.4
H.J. Busscher et al, Coll. Surf. 9 (1984), p. 319-331
of Surface Tension @ 20 °C
48.5 ± 9 F.M. Fowkes,
Ind. Eng. Chem. 56 (1964) p. 48
49.5 ± 1 D.K. Owens
et al., J. Appl. Polym. Sci. 13 (1969), p.1741
50.8
G. Ström et al., J. Colloid Interf. Sci. 119 (1987), p. 352
Polar Force Contrib.
mN/m 2.6
H.J. Busscher et al, Coll. Surf. 9 (1984), p. 319-331
of Surface Tension @ 20 °C
2.3
F.M. Fowkes, Ind. Eng. Chem. 56 (1964) p. 48
1.3
D.K. Owens et al., J. Appl. Polym. Sci. 13 (1969), p.1741
0.0
G. Ström et al., J. Colloid Interf. Sci. 119 (1987), p. 352
Acid-Base (A-B) Contributions
total,
mN/m 50.8
M.L. Gonzalez-Martin et al., Langmuir 13 (1997), p. 5991
of Surface Tension
LW, mN/m 50.8
A, mN/m 0.72
B, mN/m 0.00
Parachor
1
215.0
eval. from meas. Surface Tension and Density,
CRC Hdb 97/98 #7506 [1]
Interfacial Tension vs. water mN/m
35.86 ± 0.37 @ 20 °C, DataPhysics Instruments
GmbH, 1998
41.6
W. Fox: J. Am. Chem. Soc. 67 (1945) p. 700,
E.G. Carter, D.C. Jones, Trans. Faraday Soc. 30 (1934)
p. 1027
48.50
@ 20 °C, W.D. Harkins, A. Feldmann, J. Am. Chem. Soc. 44 (1922)
p.2665 (2673)
Interfacial Tension vs. water Function
IFT = A + BT, T = temperature (°C)
IFT = Interfacial Tension A, mN/m
38.04 ± 0.37 DataPhysics Instruments GmbH,
1998
Tmin (10 °C), Tmax (30 °C) B, mN/m/K
-0.1085 ± 0.018 DataPhysics Instruments GmbH, 1998
Solubility in water
Mass-% 0.124
@ 30 °C, CRC Hdb 97/98, p. 8-87
Solubility of water
Mass-% -
Henry' Law Constant (water) mol/kg bar
2.3
@ 298.15 K, Moore, Geen, et al., 1995 [19]
2.8
@ 298.15 K, Yaws and Yang, 1992 [20]
kPa m³/mol 0.032
@ 25 °C, CRC Hdb 97/98, p. 8-87 [1]
d(ln(k°H))/d(1/T)
K
5000
@ 298.15 K, Moore, Geen, et al., 1995 [19]
log P
2.30
meas. Pomona, 1987
2.35
estim. LOGKOW, http://esc.syrres.com/~esc1/kowint.htm
2.31
estim. Molecular Modeling Pro 3.0, group contrib.
2.31
estim. CLOGP, http://www.daylight.com/daycgi/clogp
Hansen's 3D-Solubility Parameter
total, @ 25 °C
MPa^(1/2) 19.0
CRC Hdb SCS, 1997, p. 331 [17]
dispersion
MPa^(1/2) 17.8
CRC Hdb SCS, 1997, p. 331 [17]
polar
MPa^(1/2) 3.9
CRC Hdb SCS, 1997, p. 331 [17]
H-bonding
MPa^(1/2) 5.5
CRC Hdb SCS, 1997, p. 331 [17]
Van der Waals Volume
cm³/mol 50.82
estim. Molecular Modeling Pro 3.0, MM2 geometry
50.93
Daubert et al. 1989 [6]
Van der Waals Area
109 cm²/mol 6.832
estim. Molecular Modeling Pro 3.0, MM2 geometry
6.430
Daubert et al. 1989 [6]
Molecular Structure (theor. calc., Hyperchem 5.02, AM1 method)
content of matrix:
column 1: element abbreviation, column 2: bond length in Å,
column 3: vary? Y=1/N=0, column 4: bond angle in °,
column 5: vary? Y=1/N=0, column 6: dihedral angle in °, column
6: vary? Y=1/N=0, column 7: bond with atom #,
column 8: bond angle with atom # in column 7 and 8, column 9: dihedral
angle with atom # in column 7, 8, and 9
AM1 UHF PRECISE GNORM=0.03
Name: D:\MOPAC6.0\Diiodmethane.mop
Sum formula: CH2I2
C 00000.0000 0 00000.0000 0 00000.0000 0 0 0 0
H 00001.1077 1 00000.0000 0 00000.0000 0 1 0 0
H 00001.1077 1 00109.3146 1 00000.0000 0 1 2 0
I 00002.0418 1 00108.7105 1 00241.4761 1 1 2 3
I 00002.0417 1 00108.7161 1 00118.5339 1 1 2 3
0
Additional References:
[1] CRC Hdb 97/98
Lide, D. R. (Ed.): CRC Handbook of Chemistry and Physics 78th Edition,
1997-1998, CRC Press, Inc.,
Boca Raton, FL, 1997
[2] NIST Webbook, 1998
http://www.nist.gov
[3] LB, 1961-98
Landolt-Börnstein: Numerical Data and Functional Relationships
in Science and Technology, New Series,
Springer-Verlag, Berlin, 1961-98
[4] D'Ans-Lax, 1970
D'Ans-Lax, Taschenbuch für Chemiker und Physiker, Dritter
Band, 3rd ed., Springer-Verlag, Berlin, 1970
[5] Riddick et al., 1986
Riddick, J.A., Bunger, W.B., Sakano, Th.K.: Techniques of chemistry,
Volume II, Organic Solvents,
4th ed., J. Wiley & Sons, N.Y.1986, p. 553
[6] Daubert et al., 1989
Daubert, T.E., Danner, R.P.: Physical and thermodynamical properties
of pure chemicals,
data compilation, Hemisphere Publishing Corp. N.Y. 1989/Taylor
& Francis, Washington D.C. 1989
[7] Yaws, 1995
Yaws, C. L: Handbook of Viscosity, Gulf Publishing; Houston 1995,
Vol. 1-3
[8] Kudchadker and Kudchadker, 1976
Kudchadker, S.A.; Kudchadker, A.P., Erratum: Ideal gas thermodynamic
properties of eight
bromo- and iodomethanes, J. Phys. Chem. Ref. Data, 1976, 5, p.
529-530.
[9] Furuyama, Golden, et al., 1968
Furuyama, S.; Golden, D.M.; Benson, S.W., The thermochemistry of
the gas-phase equilibrium
2CH3I = CH4 + CH2I2. The heat of formation of CH2I2, J. Phys. Chem.,
1968, 72, p. 4713-4715
[10] Carson, Laye, et al., 1993
Carson, A.S.; Laye, P.G.; Pedley, J.B.; Welsby, A.M., The enthalpies
of formation iodomethane,
diiodomethane, triiodomethane, and tetraiodomethane by rotating
combustion calorimetry,
J. Chem. Thermodyn., 1993, 25, p. 261-269
[11] Shehatta, 1993
Shehatta, I., Heat capacity at constant pressure of some halogen
compounds,
Thermochim. Acta, 1993, 213, p. 1-10
[12] Kurbatov, 1948
Kurbatov, V.Ya., Heat capacity of liquids. 2. Heat capacity and
the temperature dependence of
heat capacity from halogen derivatives of acylic hydrocarbons,
Zh. Obshch. Kim.,
1948, 18, p. 372-389
[13] Carson, Laye, et al., 1994
Carson, A.S.; Laye, P.G.; Pedley, J.B.; Welsby, A.M.; Chickos,
J.S.; Hosseini, S., The enthalpies
of formation of iodoethane, 1,2-diiodoethane, 1,3-diiodopropane,
and 1,4-diiodobutane,
J. Chem. Thermodyn., 1994, 26, p. 1103-1109
[14] Tsai, Baer, et al., 1975
Tsai, B.P.; Baer, T.; Werner, A.S.; Lin, S.F., A photoelectron-photoion
coincidence study of the
ionization and fragment appearance potentials of bromo- and iodomethanes,
J. Phys. Chem., 1975, 79, p. 570
[15] Stull, 1947
Stull, D.R., Vapor Pressure of Pure Substances Organic Compounds,
Ind. Eng. Chem., 1947, 39, p. 517-540.
[16] USEPA, 1982
USEPA, Air and steam stripping of toxic pollutants, Cincinnati,
OH, USA, 1982.
[17] CRC Hdb SCS, 1997
Birdi, K.S.: CRC Handbook of Surface and Colloid Science, CRC Press,
Boca Raton, FL, 1997, p. 328-332
[18] D'Ans-Lax, 1998
D'Ans-Lax, Taschenbuch für Chemiker und Physiker, Dritter
Band, 4th ed., Springer-Verlag, Berlin, 1998
[19] Moore, Geen, et al., 1995
Moore, R.M.; Geen, C.E.; Tait, V.K., Determination of Henry's law
constants for a suite of naturally
occuring halogenated methanes in seawater, Chemosphere, 1995, 30,
p. 1183-1191
[20] Yaws and Yang, 1992
Yaws, C.L.; Yang, H.-C., Henry's law constant for compound in water
in Thermodynamic and Physical
Property Data, C. L. Yaws, ed(s)., Gulf Publishing Company, Houston,
TX, 1992, p. 181-206
Last updated: 15.06.2018 T. Holz